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Cell morphology-based machine learning models for human
cell state classification
Yi Li1,2, Chance M. Nowak1,2,3, Uyen Pham1,2, Khai Nguyen1,2 and Leonidas Bleris1,2,3✉

Herein, we implement and access machine learning architectures to ascertain models that differentiate healthy from apoptotic cells
using exclusively forward (FSC) and side (SSC) scatter flow cytometry information. To generate training data, colorectal cancer
HCT116 cells were subjected to miR-34a treatment and then classified using a conventional Annexin V/propidium iodide (PI)-
staining assay. The apoptotic cells were defined as Annexin V-positive cells, which include early and late apoptotic cells, necrotic
cells, as well as other dying or dead cells. In addition to fluorescent signal, we collected cell size and granularity information from
the FSC and SSC parameters. Both parameters are subdivided into area, height, and width, thus providing a total of six numerical
features that informed and trained our models. A collection of logistical regression, random forest, k-nearest neighbor, multilayer
perceptron, and support vector machine was trained and tested for classification performance in predicting cell states using only
the six aforementioned numerical features. Out of 1046 candidate models, a multilayer perceptron was chosen with 0.91 live
precision, 0.93 live recall, 0.92 live f value and 0.97 live area under the ROC curve when applied on standardized data. We discuss
and highlight differences in classifier performance and compare the results to the standard practice of forward and side scatter
gating, typically performed to select cells based on size and/or complexity. We demonstrate that our model, a ready-to-use module
for any flow cytometry-based analysis, can provide automated, reliable, and stain-free classification of healthy and apoptotic cells
using exclusively size and granularity information.
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INTRODUCTION
Since its invention in 1960s, fluorescence-based flow cytometry
has become one of the most powerful tools in biomedical
research to efficiently and quantitatively analyze information of
cellular properties at single-cell level, which range from cell
counting and sorting to determining cell characteristics and
states1–3. Typically, the processing of the samples commences by
selecting cells based on their size and granularity, with a general
gating strategy based on the forward scatter (FSC) and side scatter
(SSC) values, which are correlated with the size and granularity of
the cells, respectively4,5. This process assists in separating healthy
cells from apoptotic ones based on morphological changes, which
for example may result from adverse conditions during cell
suspension preparations. Notably, FSC and SSC yield three related
measurements (A: area, H: height, W: width). In common practice,
only one pair of the readings (e.g., FSC-A vs. SSC-H) is used to
manually determine a gating boundary.
Identifying the state of cells (i.e., healthy vs. apoptotic) can be

implemented with high accuracy using a conjugated Annexin V/
propidium iodide (PI)-staining assay. Specifically, Annexin V
belongs to a family of calcium-dependent phospholipid-binding
proteins, which has a strong binding affinity for phosphatidylser-
ine (PS). Under normal physiological conditions, PS is internalized
to the inner leaflet of the cell membrane. Upon apoptosis
initiation, PS is translocated to the outer leaflet of the cell
membrane in an ATP-dependent manner to become accessible for
signal detection by phagocytic cells6. Thus, by conjugating a
fluorophore to Annexin V, early apoptotic cells can be detected
with flow cytometry7. Furthermore, as cells continue to progress
through apoptosis the cell membrane begins to lose integrity and
cells become necrotic. The fluorescent viability dye, PI, is usually

impermeable to the cell membrane, but as the cell begins to
degenerate, PI freely diffuses into and stains nucleic acids within
the dying cell; thus, distinguishing early and late apoptotic/
necrotic cells.
Machine learning refers to the construction of statistical models

based on sample data (training data) in order to make predictions
or decisions on future data (testing data). Due to the rapidly
developing computational infrastructure, applications for machine
learning in the past two decades have witnessed an explosive
growth in diverse knowledge domains including biomedical
research and medicine8–10. Prominent examples include cancer
prognosis/prediction11–13, drug discovery and development14–16,
as well as deciphering complex biological networks17–19.
Since 2007, several machine learning-based computational

approaches have been proposed to differentiate cell types and
states using microscopy20–33. As an example, using time-lapse
data of cell mass distribution acquired from the quantitative phase
imaging (QPI) assay, Balvan and colleagues devised a Bidirectional
Long Short-term Memory network that achieved 76% accuracy for
cell death detection34. Similarly, based on the morphological
features extracted from the fluorescence microscopy images,
Duever and colleagues built a support vector machine (SVM)
classifier to distinguish between normal and apoptotic states of
CHO cells35.
Each of the above experimental and computational protocols to

study cell health has its own disadvantages. The Annexing V/PI
staining method, despite being highly accurate, is relatively
laborious and expensive. Importantly, the staining process may
interfere with measurements of other cellular parameters.
Unfortunately, the comparatively straightforward FSC-A/SSC-H
gating protocol involves arbitrary boundary drawing and thus
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may introduce human bias. Furthermore, the current computa-
tional methods for live/apoptotic cell prediction mostly rely on
phase contrast or fluorescence microscopy images, which may not
be a viable option in many studies.
To address these challenges, we hypothesize that each of the

six FSC and SSC measurements (FSC-A, FSC-H, FSC-W, SSC-A, SSC-
H, and SSC-W) contains unique information about the cellular
state, and presumably their combination can be indicative of
apoptotic state. Accordingly, using these six-cell morphology-
based features, we have successfully built a Multilayer Perceptron
(MLP)-based predictive model which returns both high precision
and high recall when predicting the live cells within a population.

RESULTS
Data collection for training and testing sets
The human colorectal cancer cell line HCT116 was reverse
transfected with miR-34a-5p mimic (final concentration:
25 nM)36. The cells were then stained with Annexin V-Alexa Fluor
488 dye and PI before being analyzed by flow cytometry37. Live
and apoptotic cells were distinguished with a cutoff value from
Annexin V-Alexa Fluor 488 signal (Supplementary Figs. 1 and 2, i.e.,
Alexa Fluor 488-negative cells were considered live, while Alexa
Fluor 488-positive were considered apoptotic). A small percentage
of the cells was found to contain negative values for Alexa Fluor
488 and PI fluorescence and were subsequently excluded from
our analysis. In total, 9990 cells were recovered, which contained
5722 live cells and 4268 apoptotic cells. To ensure the balance
between the two labels (the ratio of live and apoptotic cells= 1),
we then randomly sampled 4268 live cells from the original live
cell population, which were combined with the 4268 apoptotic
cells to form the starting dataset. Finally, this starting dataset was
randomly split into the training dataset and testing dataset at a
ratio of 80:20 (size of training dataset: size of testing dataset).
Specifically, the training dataset (6828 cells, Supplementary Table
1) contained 3411 live cells and 3417 apoptotic cells. The testing
dataset (1708 cells, Supplementary Table 2) contained 857 live
cells and 857 apoptotic cells.
For the purposes of classification for machine learning training

sets, the “live” state was labeled as 0, while the “apoptotic” state as
1. In addition to the signal collected for the apoptotic dyes, FSC-A,
FSC-H, FSC-W, SSC-A, SSC-H, and SSC-W values were also collected
and served as the features for building the predictive models.

Data preprocessing and visualization
We first explored the statistical distributions of the six features
(FSC-A, SSC-A, FSC-H, SSC-H, FSC-W, and SSC-W) using box
plotting. As shown in Fig. 1a and Supplementary Table 3, the

means of these features were comparable, with the maximal ratio
less than 2.0-fold (meanSSC-A/meanFSC-H= 1.81). Nevertheless,
since we adopted Euclidean distance-based learning algorithms
(e.g., k-NN: k-nearest neighbors), and the scaling operations were
known to speed up gradient descent and thus facilitate
algorithms, such as MLP, we subjected our training and testing
samples to data standardization and compared the performances
of models derived from both non-standardized and standardized
datasets.
In order to visualize the training samples in two-dimensions, we

applied both principal component analysis (PCA) and t-distributed
stochastic neighbor embedding t-SNE38 to the standardized
training data using two components. As shown in Fig. 1b (PCA)
and 1c (t-SNE), the live (green) and apoptotic (yellow) cells were
clearly separable, yet significant overlapping still occurred
centered at (0, 0) positions.

Selection of predictive models
Considering our number of features as well as the uncertainty of
linearity or non-linearity, we subject the training dataset to five
classification algorithms (logistical regression, random forest, k-
nearest neighbor, MLP, and SVM) in order to systematically
compare their predictive performances (for general workflow, see
Fig. 2). The Naïve Bayes classifier was not included because some
features, such as FSC-W and FSC-H, are known to be biologically
related. Specifically, all screening models were subjected to
tenfold cross-validation based on two filtering criterions to ensure
acceptable balance between model bias and variance: (1) the
mean accuracy >0.90, and (2) the standard deviation of accuracy
<0.10. Using standardized training data, the logistical regression
model yielded a mean accuracy value less than 0.90 and was
discarded. In contrast, 93 random forest screening models
(number of trees from 1 to 100, Supplementary Table 4) satisfied
these two filtering conditions. Similarly, 79 k-NN screening models
(k= 1–100, Supplementary Table 5) were preserved. For MLP, we
fixed the number of hidden layers of the neural network at 2, as it
has been proposed that a 2-hidden layer model could approx-
imate any arbitrary smooth mapping to any given accuracy. Out of
900 screening MLP models (number of nodes for the first hidden
layer= 1–30, number of nodes for the second hidden layer=
1–30), 862 passed the given filter and were subjected to further
analysis (Supplementary Table 6). For SVM models, three kernels
(Linear, Gaussian, and Sigmoid) functions and a range of their
corresponding parameters (C: cost parameter, gamma for
Gaussian kernel) were included (details in “Materials and
Methods/Machine learning model training and testing” sections),
and for the standardized training set, 12 models using the
Gaussian kernel passed the given filter (Supplementary Table 7).

Feature Distributionsa b PCA c t-SNE Analysis

Fig. 1 Descriptive statistics and visualization of the training data. a Box and whisker plot of the training dataset. The means of the six
features (FSC-A, SSC-A, FSC-H, SSC-H, FSC-W, and SSC-W) were comparable, with the maximal ratio less than 2.0-fold (meanSSC-A/meanFSC-H=
1.81). b Visualization of six-dimensional training dataset (green: live cells, yellow: apoptotic cells) using PCA (principal component analysis).
c Visualization of the six-dimensional training dataset (green: live cells, yellow: apoptotic cells) using t-SNE (t-distributed stochastic neighbor
embedding).
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We subsequently applied the 1046 candidate models (93 for
random forest, 79 for k-NN, 862 for MLP, and 12 for SVM) to the
standardized testing data and further filtered the models based
on: (1) precision for predicting the live cell population >0.91, and
(2) recall for predicting the live cell population >0.91. Our focus is
mainly on the predictive power of the live population, as this
study was primarily designed for improving “gating” of live cells in
general flow cytometry-based assays without the need for
staining. As shown in Supplementary Table 8, only 96 MLP
models survived this additional filter, and 3 of those models with
AUC values >0.97 (number of nodes for first layer= 13/number of
nodes for second layer= 19, number of nodes for first layer= 13/
number of nodes for second layer= 21, and number of nodes for
first layer= 16/number of nodes for second layer= 6, named as
MLP 13-19, MLP 13-21, and MLP 16-6, respectively) were included
in our final candidate classification models (Table 1).
In parallel, we performed the identical analytic procedures on

non-standardized training data. The logistical regression, all of 100
k-NN (k= 1–100), and all of 68 SVM models failed to yield mean
accuracy larger than 0.90 and standard deviation of accuracy
smaller than 0.10 during the tenfold cross-validation analysis. In
contrast, 94 random forest (number of trees from 1 to 100) and
one MLP model satisfied this initial filtering condition. However,
when subsequently applied to the testing dataset, all of these
models (95 in total) failed to pass the second filtering condition
(precision > 0.91 and recall > 0.91 when predicting live cells). As an
example, although the model MLP 19-4 (number of nodes in the
first layer: 19, number of nodes in the second layer: 4) passed the
first filtering, it yielded relatively low precision when predicting
live cells on the testing dataset (precision: 88.8%). These results
indicate that the magnitudes of features in our dataset varied
significantly, which makes feature scaling (e.g., normalization and
standardization) essential for optimizing the data training process.

Model Selection: precisionlive > 0.91
recalllive > 0.91

10-Fold Crossvalidation: meanaccuracy > 0.90
Standard Deviationaccuracy < 0.10

Clustering (K-means,
Gaussian Mixture)

Classification (Logistic Regression, Random Forest, k-NN,
Multilayer Perceptron, Support Vector Machine)

Data Visualization (PCA, t-SNE)

Ensemble Models (Hard Voting, Soft Voting)

Comparison With Conventional Gating

Feature Examination/Feature Scaling

Cell State Determination For Training And Testing Datasets
(Annexing V/PI staining assay)

Data
 collection

Data 
pre-processing 
and visualization

Model training 
and validation

Model testing 
and evaluation

Randomly Split The Data Into Training And Testing Datasets
(80% Training, 20% Testing)

Cell State Determination For Training And Testing DatasetsTT
(Annexing V/PI staining assay)

Feature Examination/Feature Scaling

Data Visualization (PCA, t-SNE)

Classification (Logistic Regression, Random Forest, k-NN,
Multilayer Perceptron, Support Vector Machine)VV

10-Fold Crossvalidation: meanaccuracy > 0.90
Standard Deviationaccuracy < 0.10

Model Selection: precisionlive > 0.91
recalllive > 0.91

Ensemble Models (Hard Voting, SoftVV Voting)VV

Comparison With Conventional Gating

Randomly Split The Data Into Training And Testing DatasetsTT
(80% Training, 20% Testing)TT

Fig. 2 General workflow of building a cell morphology-based
machine learning model. The modeling process consists of four
steps: Data collection, Data pre-processing and visualization, Model
training and validation, and Model testing and evaluation.
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Comparison of candidate models
To compare the three candidate models, we plotted both the
receiver operating characteristic (ROC) and precision-recall curves.
As shown in Fig. 3a, the three MLP models (MLP 13-19, MLP 13-21,
and MLP 16-6) displayed comparable AUC values (0.97) in the ROC
plot. In addition, the three models showed identical average
precision values (Fig. 3b, average precision: 0.97), indicating that
all three models performed with similar strength when predicting
the live cell subpopulation.
We further explored whether ensemble models based on the

three candidate models could produce more accurate predictive
outcomes. To this end, we subjected the models to hard voting,
which makes the prediction based on a simple majority vote, and
soft voting, which averages the probabilities derived from
individual models. As shown in Table 2, when comparing the
individual model with highest ROC AUC value (MLP 16-6), both
hard voting and soft voting marginally improved the precision
when predicting the live cells (91.7% for hard voting, 91.3% for
soft voting, and 91.2% for MLP 16-6), while slightly decreasing
recall values (93.2% for hard voting, 93.0% for soft voting, and
93.3% for MLP 16-6). Taken together, these observations indicated
that the ensemble models did not significantly improve the
precision (Supplementary Fig. 3) and recall values for the live cell
population. This was possibly because all original models had
already shown relatively high predictive power (the ROC AUC
values for all three models were larger than 0.97).
Finally, the FSC-A vs. SSC-A gating method is typically used to

isolate healthy cells (three gates of different size, Fig. 4a) based on
size and granularity (complexity). As shown in Fig. 4b, this
conventional approach results in both lower precision (85.8% for
gate A, 89.1% for gate B, compared to 91.2% for MLP 16-6) and
much lower recall values (73.6% for gate A, 54.5% for gate B,
compared to 93.3% for MLP 16-6) for gates A and B when
predicting live cells. In addition, while the gate C (the smallest size)
yielded a slightly higher precision (93.9%), it failed to recover the

vast majority of true live cells (recall: 25.5%). As evident in
Supplementary Figs. 1 and 2, the poor performance of the manual
gating mainly arose from the significant overlapping and
co-existence of live and apoptotic cells within the main cell
cluster in a FSC-A vs. SSC-A plot (green: live, yellow: apoptotic).
Conceivably, the exclusion of a relatively large percentage of live
cells (Fig. 4c) after conventional gating, and to a lesser extent the
inclusion of apoptotic cells, will affect the validity of subsequent
cellular analysis39,40, especially in the context of cell health-related
assays, such as cell proliferation or drug response.

DISCUSSION
There are two main types of machine learning approaches:
supervised and unsupervised learning. Supervised learning
requires using predefined labels (e.g., live or apoptotic cell state)
that are assigned to experimental instances (training dataset).
Whereas in unsupervised learning, no such labels are available and
instead similar instances are grouped (clustered) based on the
inherent structure of their features. To compare the performance
between these two approaches, we further subjected our
standardized or non-standardized training data to two commonly
used clustering algorithms (K-means clustering and Gaussian
mixture clustering, number of clusters= 2). As shown in
Supplementary Figs. 4–7, both algorithms delivered relatively
poor predictive performances on both standardized and non-
standardized training data, as seen by the extensive overlap of the
two clusters from both live and apoptotic cell populations. When
using the best-performing labeling schema for non-standardized
data, the K-mean clustering (green for live, and red for apoptotic
cells) yielded 52.7% of precision, 41.3% of recall, and 52.2% of
accuracy when predicting the live cells (Supplementary Fig. 4), and
the Gaussian mixture clustering (green for apoptotic, and red for
live cells) yielded 57.4% of precision, 65.1% of recall, and 58.5% of
accuracy (Supplementary Fig. 5). Similarly, for standardized data,

a b

MLP 13-19 = 0.97

MLP 16-6 = 0.97
MLP 13-21 = 0.97

MLP 13-19 = 0.97
MLP 13-21 = 0.97

MLP 16-6 = 0.97

Fig. 3 Comparison of predictive performances of the three candidate models. a ROC curves of the candidate models. b Precision-recall
curves of the candidate models. Both ROC and Precision-recall analysis indicated that the three multilayer perceptron-based models yielded
comparable performance when predicting live cells.

Table 2. Predictive performances of the ensemble models based on the three candidate models using two labels (0: live, 1: apoptotic).

Index True live False apoptotic False live True apoptotic Live precision Live recall Live f value Accuracy ROC_AUC

MLP 16-6 800 57 77 774 0.912 0.933 0.923 0.922 0.970

hard_vote 799 58 72 779 0.917 0.932 0.925 0.924 N/A

soft_vote 797 60 76 775 0.913 0.930 0.921 0.920 0.971
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the K-mean clustering (green for live, and red for apoptotic cells)
yielded 50.3% of precision, 62.8% of recall, and 50.4% of accuracy
when predicting the live cells (Supplementary Fig. 6), and the
Gaussian mixture clustering (green for apoptotic, and red for live
cells) yielded 57.5% of precision, 65.1% of recall, and 58.5% of
accuracy (Supplementary Fig. 7). These findings corroborate a
general rule in machine learning stating that unless necessary,
relevant data (e.g., the cell state labels) should not be discarded.
As described above, the Annexin V/PI assay is used to not only

separate live and apoptotic cells, but additionally differentiate
between early and late apoptotic cell subpopulations (i.e., live
cells: Annexin V-negative and PI-negative, early apoptotic cells:
Annexin V-positive and PI-negative, late apoptotic cells which

include necrotic and dying/dead cells: Annexin V-positive and PI-
positive). Thus, for the same miR-34a-treated HCT116 cells, we first
removed any cells with negative values for Alexa Fluor 488 and PI
fluorescence. In total, 9990 cells were recovered, which contained
5722 live cells (labeled as 0), 699 early apoptotic cells
(labeled as 1), and 3569 late apoptotic cells (labeled as 2). Next,
this starting dataset was randomly split into the training dataset
and testing dataset at a ratio of 80:20 (size of training dataset: size
of testing dataset). Specifically, the training dataset (7992 cells,
Supplementary Table 9) contained 4607 live cells, 552 early
apoptotic cells, and 2 833 apoptotic cells. The testing dataset
(1998 cells, Supplementary Table 10) contained 1115 live cells, 147
early apoptotic cells, and 736 apoptotic cells (Supplementary Fig.
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8). Both datasets were subsequently standardized as described
above. To ensure the balance between the three labels (the ratio
of live, early, and late apoptotic cells= 1) in the training dataset,
we then used the SMOTE (Synthetic Minority Over-sampling
Technique) algorithm to create synthetic samples for minority
classes (early and late apoptotic cells). Consequently, the resulting
training dataset contained the equal number of samples for all
three labels (4607 samples for each label, Supplementary Table
11). Meanwhile, it should be noted that when constructing
predictive models, oversampling and generation of synthetic
observations shall be applied to the training dataset alone, and
not to the testing dataset41.
Next, we constructed both random forest (number of trees from 1

to 100) and MLP (number of nodes for the first hidden layer= 1–30,
number of nodes for the second hidden layer= 1–30) models using
the balanced/standardized training dataset, and subsequently
applied all these 1000 models on the testing dataset using the
same filtering condition (precision > 0.91 and recall > 0.91 when
predicting live cells). Interestingly, all surviving models (5 for MLP,
Supplementary Table 12, and 49 for random forest, Supplementary
Table 13) showed relatively good predictive performance for both
live and late apoptotic cell subpopulations. As an example, for the
MLP model with highest accuracy value (88.5%, MLP 7-2), it
predicted the live cells with 93.2% precision and 91.1% recall. In
addition, it yielded 91.5% precision and 89.7% recall when
predicting late apoptotic cells. Similarly, for the random forest
model with highest accuracy value (88.3%, RF 76), it predicted the
live cells with 93.0% precision and 91.4% recall, and additionally
predicted the late apoptotic cells with 91.4% precision and 89.1%
recall. In contrast, both models demonstrated poor predictive power
for early apoptotic cells (Supplementary Figs. 9 and 10, precision for
MLP 7-2: 49.7%, precision for RF 76: 48.4%, recall for MLP 7-2: 63.3%,
recall for RF 76: 60.5%), and it should be noted that the ensemble
models (hard voting or soft voting) based on these two models did
not yield better predictive outcomes for the early apoptotic cells.
Specifically, both hard and soft voting marginally increased the
precision when predicting the early apoptotic cells (hard voting:
50.9%, soft voting: 51.7%), while slightly decreasing the recall values
(hard voting: 59.2%, soft voting: 61.2%) compared to the MLP 7-2
model (Table 3). This deficiency may arise from the fact that
compared to live and late apoptotic cells, the original training
dataset contained much less early apoptotic cells. In addition, it is
conceivable that as a transitional stage, the early apoptotic cells may
inherently resemble either live or late apoptotic cells
morphologically.
As mentioned earlier, the field of cytology has witnessed great

advances in the past decade in terms of both single-cell
instrumentation and machine learning-based data analysis20–35.
As an example, Nitta et al. established an intelligent image-
activated cell sorter which integrates high-throughput cell
microscopy, focusing, and sorting on a hybrid software-
hardware data-management infrastructure31. Using this platform,
they were able to separate platelet aggregates from human blood
sample with extremely high precision (99.0%). Similarly, Lee
et al.23 devised a multiplexed asymmetric-detection time-stretch
optical microscopy (multi-ATOM) that can accommodate
ultrahigh-throughput (>700,000 cells/s) single-cell biophysical
phenotyping at high accuracy (>94%). Although most of these
studies focused on differentiating cell types, it is conceivable that
similar approaches could be adopted to determine cell heath
states.
Compared to our protocol, which is based on standard flow

cytometry, these technologies capture more information of
physically measurable quantities (features) of the cells and thus
could potentially allow more thorough and accurate cell profiling.
As an example, using an intelligent frequency-shifted optofluidic
time-stretch quantitative phase imaging (OTS-QPI) platform30, Wu
et al. successfully separated white blood cells from HL-60 leukemiaTa
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cells with both 99% precision and 99% recall. Nevertheless, we
emphasize that many of these platforms are highly customized
and complex (e.g., the OTS-QPI30 system consists of both a
frequency-shifted OTS-QPI microscopy and a microfluidic chip,
Supplementary Table 14), and thus may not be readily available to
research labs compared to conventional flow cytometry. As a
consequence, we argue that our methodology offers an accurate
and easy-to-use live cell identification approach using a simple
flow cytometry-based assay. In addition, our model (MLP 16-6)
provides comparable or even higher predictive performance
compared to several image-based predictive algorithms. As an
example, the SVM model proposed by Duever and colleagues35

yielded 86.5% of precision and 90.0% of recall when predicting
live cells, both of which were significantly lower than our MLP 16-6
model (Supplementary Table 14).
In conclusion, we developed a MLP-based machine learning

model (MLP 16-6) based on six FSC and SSC-related cell properties
that provides higher predictive performance compared to the
conventional FSC-A/SSC-A gating method and is relatively
inexpensive compared to the Annexin V/PI apoptotic classification
assay. We envision our algorithm will provide a convenient and
accurate alternative for various flow cytometry-based biological
assays.

MATERIALS AND METHODS
Mammalian cell culture
The HCT116 cells were acquired from the American Type Culture Collection
(catalog number: CCL-247) and maintained at 37 °C, 100% humidity and
5% CO2. The cells were grown in Dulbecco’s modified Eagle’s medium
(Invitrogen, catalog number: 11965–1181) supplemented with 10% fetal
bovine serum (Invitrogen, catalog number: 26140), 0.1 mM MEM non-
essential amino acids (Invitrogen, catalog number: 11140–050), and 0.045
units/mL of Penicillin and 0.045 units/mL of Streptomycin (Penicillin-
Streptomycin liquid, Invitrogen, catalog number: 15140). To pass the cells,
the adherent culture was first washed with PBS (Dulbecco’s Phosphate
Buffered Saline, Mediatech, catalog number: 21-030-CM), then trypsinized
with Trypsin-EDTA (0.25% Trypsin with EDTAX4Na, Invitrogen, catalog
number: 25200) and finally diluted in fresh medium.

Apoptosis induction and staining
To generate the miR-34a-treated testing dataset, HCT116 cells were reverse
transfected with miR-34a-5p mimic (Qiagen, catalog number: MSY0000255,
final concentration: 25 nM) with Lipofectamine RNAiMAX (ThermoFisher
catalog number: 13778075) and allowed to incubate for 48 h. Subsequently,
cells were detached from 100mm Petri Dish by aspirating off the growth
medium, washing with 10mL of PBS (Mediatech, catalog number: 21-030-
CM), trypsinizing the attached cells with 2mL 0.25% Trypsin-EDTA
(Invitrogen, catalog number: 25200), then quenched with fresh complete
media. Cells were centrifuged at 1000 rpm for 5min at room temperature.
The cell pellets were then washed with 1mL of PBS, again centrifuged at
1000 rpm for 5min at room temperature before finally being resuspended
in 1X annexin-binding buffer. Next, the resuspended cells were stained
using the Dead Cell Apoptosis Kit with Annexin V-Alexa Fluor™ 488 & PI
(Invitrogen, catalog # V13241), following the manufacturer’s instructions.
The samples were then analyzed on a LSR Fortessa (BD Biosciences) flow
cytometer. Excitation/emission wavelengths for the annexin V-Alexa Fluor™
488 conjugate is 495/519 nm, and 533/617 nm for PI.

Machine learning model training and testing
Two machines were used to conduct the machine learning experiments,
namely, a Dell Desktop computer with Intel Core i7-10700 CPU @ 2.90 GHz,
Windows 10 enterprise 64-bit OS and 32 GB RAM, and a Dell laptop
computer with Intel Core i5-5300U CPU @ 2.30 GHz, Windows 7 enterprise
64-bit OS and 9 GB RAM.
Scikit-learn, a free Python machine learning library, was used to conduct

all model training and testing procedures. Other Python libraries, including
numpy, pandas, and matplotlib, were also included for data analysis and
presentation. Specifically, matplotlib.pyplot was used to generate the box
plot of the six features (supplementary scripts/data_boxplot.py). Sklearn.

preprocessing.StandardScaler was used to standardize the values of the six
features (mean= 0, standard deviation= 1). Sklearn.decomposition.PCA
and sklearn.manifold.TSNE were used to perform the PCA (supplementary
scripts/pca_training.py) and t-SNE (supplementary scripts/tnse_training.py)
analysis, respectively.
To evaluate the performance of all models, the training dataset was first

subjected to tenfold cross-validation using multiple machine learning
algorithms (Fig. 2). Briefly, sklearn.linear_model.LogisticRegression was
used to construct the logistic-regression model (supplementary scripts/lg.
py). Sklearn.neighbors.KNeighborsClassifier was used to construct 100 K-
NN models with the parameter number of neighbors varying from 1 to 100
(supplementary scripts/knn_training.py). Sklearn.ensemble.RandomForest-
Classifier was used to construct 100 random forest models with the
parameter number of tress varying from 1 to 100 (supplementary scripts/
randomforest_training.py).
For MLP, we fixed the number of hidden layers at 2, and scanned all

possible combinations of first layer (number of nodes from 1 to 30) and
second layer (number of nodes from 1 to 30) using sklearn.neural_network.
MLPClassifier (supplementary scripts/mlp_training.py). Additional para-
meters included: (1) solver= “adam”, (2) alpha= 0.001, (3) random_state
= 1, and (4) max_iter= 1000.
For SVM, grid search was implemented for linear kernel (supplementary

scripts/svm_training_linear.py) using parameter C= [0.001, 0.01, 0.1, 1, 10],
for sigmoid kernel (supplementary scripts/svm_training_sigmoid.py) using
C= [0.001, 0.01, 0.1, 1, 10, 100, 1000], and for Gaussian kernel
(supplementary scripts/svm_training_gaussian.py) using C= [0.001, 0.01,
0.1, 1, 10, 100, 1000] and gamma= [1000, 100, 10, 1, 0.1, 0.01, 0.001,
0.0001].
The experimental dataset was further subjected to clustering analysis.

Specifically, sklearn.cluster.KMeans (supplementary scripts/k_means.py)
was used to perform the K-means clustering (k= 2), and sklearn.mixture.
GasussianMixture (supplementary scripts/gaussian.py) was used to per-
form the Gaussian mixture clustering.
Finally, for ensemble models, sklearn.ensemble.VotingClassifier was used

to perform the hard and soft voting (supplementary scripts/hard_vote.py,
supplementary scripts/soft_vote.py).

Performance metrics
Performance of different models was evaluated using threshold depen-
dent and independent metrics, which include:
(1) precision: this parameter measures how accurate a model is when

predicting cells being at live state.
Precision= TP/(TP+ FP), where TP refers to correctly predicted live cells

and FP refers to falsely predicted live cells.
(2) recall: this parameter measures the model’s ability to correctly predict

live cells from actual live cells.
Recall= TP/(TP+ FN), where TP refers to correctly predicted live cells

and FN refers to falsely predicted apoptotic cells.
(3) true positive rate (TPR): this parameter measures the model’s ability

to correctly predict live cells from actual live cells.
TPR= TP/(TP+ FN), where TP refers to correctly predicted live cells and

FN refers to falsely predicted apoptotic cells.
(4) false-positive rate (FPR): this parameter measures the model’s level of

falsely predicting live cells from actual apoptotic cells.
FPR= FP/(FP+ TN), where FP refers to falsely predicted live cells and TN

refers to correctly predicted apoptotic cells.
(5) accuracy: this parameter determines the success of correctly predict

live and apoptotic cells from overall data.
Accuracy= (TP+ TN)/(TP+ FP+ TN+ FN), where TP refers to correctly

predicted live cells, FP refers to falsely predicted live cells, FN refers to
falsely predicted apoptotic cells, and TN refers to correctly predicted
apoptotic cells.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
All relevant data are available in the online version of the paper (Supplementary_Ma-
terials.pdf) and the GitHub repository (https://github.com/yilitexas/MachineLearning).
Correspondence and requests for additional materials should be addressed to L.B.
(bleris@utdallas.edu).
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All relevant scripts are available in the GitHub repository (https://github.com/
yilitexas/MachineLearning). Correspondence and requests for additional material
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